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Abstract. A corrugated and stable ground state is found for the two dimensional 

electron gas at intermediate densities, T, z 25. This state is obtained with a self con- 

sistent Hartree-Fock method with modulated trial wave functions in the deformable 

j&urn model. The state is shown to appear for pammagnetic and ferromagnetic 

systems. The electron gas is shown to be non-corrugated for high metalic densities. 

The transition to the corrugated state occurs at T. 5 4.8 in the paramagnetic and 

T. z 6.8 in the ferromagnetic cases which is much lower than the corresponding 3D 

case. The overall stability against magnetic transitions is studied. 
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The electron gas is a cornerstone of the many-body quantum theory applications 

to solid state physics [l]. Much effort has b een devoted recently to the study of this 

system in the two dimensional (ZD) case. Important applications have lead these 

studies. First, the realization that the electronic motion in the new high-temperature 

superconducting materials occurs mostly in planes has encouraged the development 

of 2D electron gas models in order to explain the high-temperature superconductiv- 

ity [2]. Second, when an external magnetic field is present the two dimensional system 

develops new interesting properties such as the fractional statistics and the quantum 

Hall effect [3]. The study of the quantum Hall effect has motivated many calcula- 

tions of the energy spectrum of two dimensional electron systems in the presence of 

magnetic fields applied perpendicularly to the electronic layer [4, 51. The 2D electron 

gas has been also used as a model for metal-oxide-semiconductor (MOS) structures, 

heterostructures and superlattices [6, 71. The transport properties of the 2D electron 

gas are also a matter of great interest in semiconductor physics [S]. 

Many of the techniques developed for the three dimensional (3D) system have 

already been applied to the 2D electron gas. For instance, the succesfull density 

functional theory [9, IO] has been also applied to the 2D electron gas in a transverse 

magnetic field [ll]. Ground state properties of the 2D electron gas have been ob- 

tained using a variational correlated-basis-function (CBF) approach [12], the ladder 

approximation [13] and the effective-potential expansion method [14]. More recently, 

the ground state properties of this system in the j&urn model have been studied 

using more accurate variational Monte-Carlo and the Green’+function Monte-Carlo 

methods [15]. However this exact solutions are in practice restricted to a few hun- 

dred particles [16], as is the case with the stochastic simulations of the Schrodinger 
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equation [17]. 

A time honored approach that we have exploited for the study of the 3D elec- 

tron gas is the Hartree-Fock (HF) method. Our approach has been to obtain self- 

consistency for a set of modulating functions combined with the deformable jellium 

hypothesis [IS]. This is a very powerful non-perturb&w technique that allows a 

direct evaluation of ground state properties in the strong coupling region of low den- 

sities such as is the case of the transition to the Wigner crystal. In this work, this 

method is applied to evaluate ground state properties of the 2D electron gas. 

One of the peculiarities of the electron gas is that in the low density regime 

the potential energy becomes relatively more important than the kinetic and it is 

expected that the electronic density becomes nonuniform in order to minimize the 

energy. Therefore at low densities, the particles will form a periodic crystalline array, 

this was first proposed by Wigner [19]. The HF method with the modulating set of 

basis functions has the built-in capability of describing both the met&c region and 

the low density region in a unified non-perturbative fashion. As in the 3D system, the 

self-consistent HF solution for the 2D electron gas at metallic densities is the plane 

wave (PW). 

However, a recurrent problem in the study of the low density transition to the 

Wigner crystal is the instability of the electron gas with respect to density variations. 

The usual way out of this problem is to postulate that the background compensates 

this instability. This hypothesis is difficult to apply in the deformable jellium model 

because the static part of the background energy is already incorporated into the 

model. One might always argue that some unknown dynamical effect could solve the 

problem, but this approch merely postpones the difficulty. It would be logically much 
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better if the electron system in the corrugated phase would exhibit a stable behavior. 

In the past, some indication of such a stable HF ground state has been reported by 

us for the 3D electron gas [20]. H owever this was considered only a preliminary result 

because the convergence of the calculation was not good enough in this system at low 

densities. Because the growth of the required computational resources dramatically 

decreases in going from three to two dimensions one might expect to obtain a more 

reliable result in the 2D electron gas. 

Consider the system of N electrons, interacting via a Coulomb potential V(Tij) = 

e’/rij, where Tij = 1~; - Tjl, immersed in a positive background in an area. A. If 

the thermodynamical limit is considered, then N ---+ 00, A --+ m with c = N/A 

constant. Schematically, the HF Hamiltonian equation of this system has the terms 

H=Te+vbb+K.e+VD+VEX, (1) 

where the subindices e and b refer to electron and background respectively, and V, 

and VEX are the direct and exchange terms of the electron-electron interaction, the 

potential V is the Coulomb interaction and T. is the electronic kinetic energy. Atomic 

units are used throught this work. 

In the deformable jelllum model, the neutralizing background is requiered to de- 

form to provide local neutrality. One consequence of this hypothesis is to diminish 

the energy of the system. The condition that defines the deformable jellium is [21] 

< VD > + < vbb > + < vb, >= 0, (2) 

i.e. the terms of the background energy are identically canceled with the direct term 
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of the particle-particle interaction. 

The trial state functions in the Slater determinant are taken to be the usual PW’s 

multiplied by modulating functions. As usual [la], the minimal modulating frecuency, 

Q,,, is obtained via de orthonormality condition of the orbit&. The orbit& proposed 

are of the form 

cos(ww) cos(qon,y), (3) 

where A is the area in which periodic boundary conditions are imposed. The co- 

efficients C,,,,, are assumed to be independent of k. These coefficients are self- 

consistently determined by the HF equations with the orthonormality condition in- 

cluded. The first term in this expansion nS = ny = 0 is the PW solution. For the 

upper limits in the sums we select ir/, = nl; = hl; in that way, when the solution is 

different from the PW, the system has a periodic density centered on a square lattice. 

The number of terms in the expansion is given by (N + 1)‘. Other lattices can be 

obtained by the usual modification of the Brillouin zone geometry. 

The energies for the normal paramagnetic and the ferromagnetic states are evalu- 

ated in order to determine the magnetic nature of the ground state. In the paramag- 

netic case, each orbital within the Fermi sphere of radius kF has double occupancy. 

While in the ferromagnetic case, the orbital6 within a sphere of radius fikp are singly 

occupied. 

The ground state energy per particle with the orbit& of Eq.(3), requires the 

evaluation of terms of the form 
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T 

F 
= ~~ICnlz(1+8na), 

V 

z= -“‘~“““&-g Cnl*Cn;Cn3C~,I(~l,n4)F(n*,na,ns,n1),(5) 
1 2 3 . 

where T, is the density parameter, in Bohr radius and N is the number of particles. 

n is a two dimensional vector n = n,i + nuj. The function l(nl,nl) that stems 

from the integrals of the Coulomb potential in terms of the components of nl and 

n4 has been numerically evaluated. Finally F( TZ~,~Z, n3,n,) is a sum of 64 terms 

which are products of Kronecker 6 functions in the components of the four n;‘s. 

Some simplification can be obtained in the exchange term where 4’ terms reduce to 

43 because of symmetry considerations. Calculations for each value of the density 

parameter T, can be carried out. The region of densities reported in this work is 

3 < 7, < 100. 

Calculations were carried out to determine the coefficients C, self-consistently, 

with an approximation of lo-’ with respect to the last iteration. The value of the 

upper limit in the sums was changed from ti = 1 up to 12, in order to obtain results 

for the ground state energy independent of ti. We get convergence for the energy 

results in a wide interval of T#, with a function with up to 169 terms. The evaluation 

of the energy results for ten points with the ti = 12 expansion required about 150 

VAX-780 equivalent hours. 

The self-consistent solution both for the paramagnetic and ferromagnetic states, 

was the PW in the high density region. The value of T. where the electronic density 

changes from constant to periodic defines the transition point to the charge density 
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waves (CDW), which at lower densities goes to the Wigner crystal [18]. Near the 

transition point the periodic density is not very pronounced, but at lower densities it 

becomes increasingly sharper. 

The difference in the ground state energy per particle between the PW case and 

the self-consistent solution, in terms of the density parameter, is shown in Fig. 1. 

We display the results for the paramagnetic and ferromagnetic systems in Figs. la 

and lb, respectively. In the graphics, the curves for different values of hl are drawn. 

The transition from PW to a modulated solution appears at a greater density in the 

paramagnetic than in the ferromagnetic system. For ti = 1 and 2 the transition 

point to the periodic density depends in the number of terms in the state function. 

Beginning with Jf = 3, this transition always occurs at T, = 4.8 in the normal 

system, and at T, = 6.8 for the completely polarized case. The value obtained for the 

transition point, T, = 4.8, in the 2D paramagnetic system is lower than the result we 

have previously obtained in the corresponding 3D electron gas of T, = 26 [20]. The 

values for the transition to the CDW Wigner-type crystal in this work are below the 

results reported in Ref. [lo] with the density functional method for the 2D electron 

gas. This is also different from the 3D case where the two models predict a similar 

transition value for 7,. The transition values in this work are also signiiicatively lower 

than the value of T, = 40 obtained for the non-corrugating background of the usual 

jellium model [15], and are closer to the metalic densities. 

It follows from Figs. la and lb that a satisfactory convergence in the energy 

is obtained in the paramagnetic system in the intermediate density region, up to 

T. x 28. A reasonable convergence is obtained at densities up to T, % 50 for the 

ferromagnetic energy. We have to go to greater values of ti if we were to look for a 
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greater degree of convergence in the energy results at lower densities. 

In Table 1 we show the ground state energy per particle for the normal system 

in order to observe the convergence of the energies at the densities considered. We 

present nine different values of the upper limit in the sums, and four different densities. 

The ferromagnetic case displays a qualitatively similar behavior. 

In Figs. 2a and 2b the ground state energy per particle is plotted for the two 

systems. The results are shown for the PW and for different values of ti. Immediately 

after the transition to periodic electronic density, we can observe in the energy curves 

a region where the slope changes. Then the curves with h/ = 12 show a minimun at 

T, = 20 in the normal system, and at T, = 30 for the fully-polarized case. That means 

that there is a region of positive pressure, as it also occurs in the metallic density 

region (where the HF solution is the PW). Thi s is a new behavior from those obtained 

so far for the energy dependence on the density. A similar result was obtained for the 

3D case [20]. However the poor convergence of the calculation for the 3D system at 

values greater than T. = 50 makes the 3D result preliminary. 

In order to get an idea of how the results reported here compare with those 

obtained with different models and methods of calculation, we also include in Fig. 2 

the results reported for the GFMC [15] for the 2D jellium. We observe that the 2D 

electron gas in the deformable jellium is a more stable system than the gas in the 

jelhum, at intermediate and high densities (7, > 10). 

Let us finally study the stability of the 2D d e ormable jellium against magnetic f 

transitions. In Fig. 3 the energies in the paramagnetic and ferromagnetic cases, 

obtained with the state function of Eq. (3) with hl = 12, are compared. The ground 
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state of the 2D electron gas in the deformable jellium calculation is a corrugated 

paramagnetic from T, = 6.5 up until T, = 24. After this point the ground state turns 

to be a corrugated ferromagnetic one. Not shown in the graphic is the region below 

T, = 5 where starting with T. u 2 up to 6.5, the ferromagnetic PW is the HF ground 

state. 

In conclusion, the deformable jellium model confirms that the usual uniform PW 

solution in a ferromagnetic configuration is the HF ground state of the 2D electron 

gas for densities between T, z 2 up to T. z 6.5. At this point the system is predicted 

to have a transition to a paramagnetic corrugate state. Then at lower densities 

7. zz 24 the electron gas will show a magnetic transition to a ferromagnetic config- 

uration. More remarkably, two metastable states are predicted by this model, one 

paramagnetic at T. = 20 and the second at T. 2 30, in a ferromagnetic configuration. 

One might wonder what the effect of the non-spin correlations would be. A par- 

tial answer can be obtained at least for static correlations by introducing a screened 

Coulomb interaction. In the past we have computed the effect of a screened Coulomb 

interaction on the energy spectrum and the ground state energy of the 3D electron 

gas [18, 221. The only effect that one expects from this type of correlations is to move 

the transition point to CDW to a lower density and as the range of the interaction is 

diminished, to move the energy of the system up. Therefore the qualitative behavior 

of the metastable states is not expected to change. 

Two of us (RMM-M and MM) would like to acknowledge the hospitality that they 

have received from Fermilab. 
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Figure Captions 

Fig. 1: Energy difference per particle, in Rydbergs, between the trivial PW and 

the HF expansion of Eq. (3), as a function of the parameter T,, in Bohr 

radius. The results are given for different values of hl. The various curves 

are labeled by the corresponding ti value . Two sets of curves are given: 

(a) paramagnetic system, (b) ferromagnetic system. 

Fig. 2: Energy per particle, in Rydbergs, as a function of 7.: (a) the paramagnetic 

system and (b) the ferromagnetic one. The different curves are labeled 

by the value of the corresponding hl. Th e crosses are the values given in 

Ref. [15]. 

Fig. 3: Ground state energy per particle,in Rydbergs, of the 2D electron gas in 

terms of the parameter T,. The full line corresponds to the ferromagnetic 

phase and the dashed line to the paramagnetic one. 
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Table Captions 

Table 1: Ground state energy per particle of the paramagnetic system as a function 

of the number of terms in the state-function. The results are given at four 

different densities that involve the intermediate and high density region. 
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Table 1. 

“* = 20 P, = 30 P, = 40 
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